

Adding auxiliary lines: Solutions

http://topdrawer.aamt.edu.au/Geometric-reasoning/Misunderstandings/Revealing-the-invisible/Adding-auxilliary-lines

1. **Aim:** To prove b = a + c

Construction: Produce *ED* to meet *BC* at *F*.

Proof:

 $\angle EFC = a^{\circ}$ (corresponding angles, *ABPEF*) but $\angle EDC = \angle DFC + \angle FCD$ (exterior angle of *DCDF*) $\therefore b = a + c$

2. **Aim:** To prove $\angle ACB = 90^{\circ}$

Construction: Construct OC.

Proof:

OA = OB = OC (radii) $\angle BCO = \angle OBC \text{ (opposite equal sides in } \Delta OBC\text{)}$ $\angle ACO = \angle CAO \text{ (opposite equal sides in } \Delta OAC\text{)}$ Now in $\triangle ABC$ $2 \times \angle ACO + 2 \times \angle BCO = 180^{\circ} \text{ (angle sum of } \triangle ABC\text{)}$ $\therefore \quad \angle ACB = \angle ACO + \angle BCO \text{ (adjacent angles)}$ $= 90^{\circ}$ $\therefore \quad \angle ACB = 90^{\circ}$

AAMT — TOP DRAWER TEACHERS

© 2013 Education Services Australia Ltd, except where indicated otherwise. This document may be used, reproduced, published, communicated and adapted free of charge for non-commercial educational purposes provided all acknowledgements associated with the material are retained.

3. Aim: To prove $\angle AOB = 2 \times \angle ACB$.

Construction: Construct the diameter *CD*.

Proof:

OA = OB = OC (radii) $\angle BCO = \angle OBC$ (opposite equal sides in $\triangle OBC$) $\angle ACO = \angle CAO$ (opposite equal sides in $\triangle OAC$) Now in $\triangle OBC$: $\angle BOD = \angle BCO + \angle OBC$ (exterior angle of $\triangle OBC$) $= 2 \times \angle BCO$ (1)Similarly in $\triangle OAC$: $\angle AOD = 2 \times \angle ACO$ (2)But $\angle AOB = \angle AOD + \angle BOD$ (adjacent angles) $= 2 \times \angle ACO + 2 \times \angle BCO$ (from 1 and 2) $= 2 \times (\angle ACO + \angle BCO)$ $= 2 \times \angle ACB$ (adjacent angles) $\therefore \angle AOB = 2 \times \angle ACB$

4. **Data:** AB = DC and $AB \parallel DC$.

Aim: Prove that *ABCD* is a parallelogram.

Construction: Construct the diagonal AC.

- 1. AC is common
- 2. $\angle BAC = \angle ACD$ (alternate angles, $AB \parallel DC$) 3. AB = DC (data)

 $\therefore \Delta ABC = \Delta CDA \quad (SAS)$ $\therefore \angle BCA = \angle DAC \quad (matching angles of congruent triangles)$ But these are alternate angles $\therefore AD \parallel BC \quad (alternate angles are equal)$ $\therefore ABCD \text{ is a parallelogram} \quad (two pairs of opposite sides parallel)$

5. **Data:** $\angle PRQ = 90^\circ$; PR = RQ; PX bisects $\angle RPQ$

Aim: Prove that PQ = PR + RX.

Construction: Construct the perpendicular from X to PQ meeting PQ at Y.

Proof:

In $\triangle PRX$ and $\triangle PYX$

1. $\angle RPX = \angle XPY$ (*PX* bisects $\angle RPQ$)

2. $\angle PRX = \angle PYX = 90^{\circ}$ (data)

3. *PX* is common

$$\therefore \Delta PRX = \Delta PYX \quad (AAS)$$

 $\therefore PR = PY$ (matching sides of congruent triangles) (i)

 $\therefore RX = YX$ (matching sides of congruent triangles) (ii)

Now in $\triangle PQR$:

PR = RQ(equal sides of isosceles ΔPQR) and $\angle PRQ = 90^{\circ}$ (given) $\therefore \ \angle PQR = 45^{\circ}$ (property of right-angles isosceles triangle) In ΔXYQ : $\angle YXQ + 45^\circ + 90^\circ = 180^\circ$ (angle sum of ΔXYQ) $\therefore \angle YXQ = 45^{\circ}$ $\therefore XY = YQ$ (opposite equal angles in ΔXYQ) (iii) Now PQ = PY + YQ(PYQ collinear) = PR + YQ(from i) = PR + XY(from ii) = PR + RX(from iii) PQ = PR + RX*.*..

Challenge solutions

1. **Data:** *PQ* || *UV* || *XY*

Aim: Prove that FG: GH = RW: WZ

Construction: Construct *RT* || *DE*

Proof:

In ΔRSW and ΔRTZ	
1. $\angle RSW = \angle RTZ$	(corresponding angles, $UV \parallel XY$)
2. $\angle RWS = \angle RZT$	(corresponding angles, $UV \parallel XY$)
$\therefore \Delta RSW \parallel \Delta RTZ$	(AAA)
$\therefore RS: RT = RW: RZ$	(matching sides of similar triangles)
$\therefore RT : RS = RZ : RW$	$(\mathbf{D} \mathbf{W} \mathbf{Z} - \mathbf{H})$
KZ = KW + WZ	(R, W, Z collinear points)

Similarly, RT = RS + ST

Now
$$\frac{RT}{RS} = \frac{RZ}{RW}$$

becomes $\frac{RS + ST}{RS} = \frac{RW + WZ}{RW}$
 $\therefore 1 + \frac{ST}{RS} = 1 + \frac{WZ}{RW}$
 $\therefore \frac{ST}{RS} = \frac{WZ}{RW}$
i.e. $ST : RS = WZ : RW$
 $\therefore RS : ST = RW : WZ$

RSGF is a parallelogram (2 pairs of opposite sides parallel) \therefore RS = FG (opposite sides of parallelogram)

Similarly, *STHG* is a parallelogram and GH = ST.

 $\therefore FG: GH = RS: ST$ = RW: WZ

Note: This result is the theorem: Parallel lines preserve ratios of intercepts on transversals. It can be abbreviated as 'parallel lines preserve ratios'.

2. **Data:** QX bisects $\angle PQR$

Aim: Prove that $\frac{PQ}{QR} = \frac{PX}{XR}$.

Construction: Produce *PQ* to *Y* so that *QX* || *YR*.

Note: This result is a corollary of the theorem proven in Question 1. An alternative proof, which does not use the theorem, appears on the following page.

Alternatively:

Data: QX bisects $\angle PQR$

Aim: Prove that $\frac{PQ}{QR} = \frac{PX}{XR}$.

Construction: Produce *PQ* to *Y* so that *QX* || *YR*.

Proof:

Let $\angle PQX = x^{\circ}$	
Then $\angle RQX = x^{\circ}$	(<i>QX</i> bisects $\angle PQR$)
$\angle QYR = \angle QRY$	(opposite equal sides in isosceles ΔQYR)
$\angle QYR + \angle QRY = \angle PQR$	(exterior angle of $\triangle QYR$)
$\therefore 2 \times \angle QYR = 2x^{\circ}$	
$\angle QYR = x^{\circ}$	
$\therefore \angle QYR = \angle PQX$	
In $\triangle PQX$ and $\triangle PYR$	
1. $\angle P$ is common	
2. $\angle PQX = \angle QYR$	(proven above)
$\therefore \Delta PQX \parallel \Delta PYR$	(AAA)
$\therefore \frac{PQ}{PY} = \frac{QX}{YR} = \frac{PX}{PR}$	(matching sides of similar triangles)
Taking $\frac{PQ}{PY} = \frac{PX}{PR}$: $PQ \times PR = PX \times PY$	
PQ(PX + XR) = PX(PQ + QY) (PXR and PQY are collinear)	
$PO \times PX + PO \times XR = PX \times PO + PX \times OY$	
$\therefore PQ \times XR = PX \times QY$	
But $QY = QR$ by construction	
$\therefore PO \times XR = PX \times QR$	

 $\therefore PQ \times XR = PX \times QR$ $\therefore \frac{PQ}{QR} = \frac{PX}{XR}$ (dividing throughout by $QR \times XR$)