Adding auxiliary lines: Solutions

http://topdrawer.aamt.edu.au/Geometric-reasoning/Misunderstandings/Revealing-the-invisible/Adding-auxilliary-lines

1. \quad Aim: To prove $b=a+c$

Construction: Produce $E D$ to meet $B C$ at F.

Proof:

$\angle E F C=a^{\circ}$ (corresponding angles, $A B P E F$)
but $\angle E D C=\angle D F C+\angle F C D$ (exterior angle of $D C D F$)
$\therefore b=a+c$
2. Aim: To prove $\angle A C B=90^{\circ}$

Construction: Construct $O C$.

Proof:

$O A=O B=O C$ (radii)
$\angle B C O=\angle O B C$ (opposite equal sides in $\triangle O B C$)
$\angle A C O=\angle C A O$ (opposite equal sides in $\triangle O A C$)
Now in $\triangle A B C$
$2 \times \angle A C O+2 \times \angle B C O=180^{\circ}$ (angle sum of $\triangle A B C$)
$\therefore \quad \angle A C B=\angle A C O+\angle B C O$ (adjacent angles)
$=90^{\circ}$
$\therefore \quad \angle A C B=90^{\circ}$
3. Aim: To prove $\angle A O B=2 \times \angle A C B$.

Construction: Construct the diameter $C D$.

Proof:

$O A=O B=O C$ (radii)
$\angle B C O=\angle O B C$ (opposite equal sides in $\triangle O B C$)
$\angle A C O=\angle C A O$ (opposite equal sides in $\triangle O A C$)
Now in $\triangle O B C$:

$$
\begin{align*}
\angle B O D & =\angle B C O+\angle O B C \quad \text { (exterior angle of } \triangle O B C \text {) } \\
& =2 \times \angle B C O \quad \text { (1) } \tag{1}
\end{align*}
$$

Similarly in $\triangle O A C$:

$$
\begin{equation*}
\angle A O D=2 \times \angle A C O \tag{2}
\end{equation*}
$$

$$
\text { But } \begin{aligned}
\angle A O B & =\angle A O D+\angle B O D \text { (adjacent angles) } \\
& =2 \times \angle A C O+2 \times \angle B C O \text { (from } 1 \text { and } 2) \\
& =2 \times(\angle A C O+\angle B C O) \\
& =2 \times \angle A C B \text { (adjacent angles) }
\end{aligned}
$$

$$
\therefore \angle A O B=2 \times \angle A C B
$$

4. Data: $A B=D C$ and $A B \| D C$.

Aim: Prove that $A B C D$ is a parallelogram.
Construction: Construct the diagonal $A C$.

Proof:

In $\triangle A B C$ and $\triangle D A C$

1. $A C$ is common
2. $\angle B A C=\angle A C D$
3. $A B=D C$
(alternate angles, $A B \| D C$)
(data)
$\therefore \triangle A B C \equiv \triangle C D A$
$\therefore \angle B C A=\angle D A C$ (matching angles of congruent triangles)
But these are alternate angles
$\therefore A D \| B C \quad$ (alternate angles are equal)
$\therefore A B C D$ is a parallelogram (two pairs of opposite sides parallel)
4. Data: $\angle P R Q=90^{\circ} ; P R=R Q ; P X$ bisects $\angle R P Q$

Aim: Prove that $P Q=P R+R X$.
Construction: Construct the perpendicular from X to $P Q$ meeting $P Q$ at Y.

Proof:

In $\triangle P R X$ and $\triangle P Y X$

1. $\angle R P X=\angle X P Y \quad(P X$ bisects $\angle R P Q)$
2. $\angle P R X=\angle P Y X=90^{\circ}$ (data)
3. $P X$ is common
$\therefore \triangle P R X \equiv \triangle P Y X \quad$ (AAS)
$\therefore P R=P Y \quad$ (matching sides of congruent triangles) (i)
$\therefore R X=Y X \quad$ (matching sides of congruent triangles) (ii)
Now in $\triangle P Q R$:
$P R=R Q \quad$ (equal sides of isosceles $\triangle P Q R$)
and $\angle P R Q=90^{\circ} \quad$ (given)
$\therefore \angle P Q R=45^{\circ} \quad$ (property of right-angles isosceles triangle)
In $\triangle X Y Q$:

$$
\begin{array}{rlrl}
& \left.\angle Y X Q+45^{\circ}+90^{\circ}=180^{\circ} \quad \text { (angle sum of } \triangle X Y Q\right) \\
& \therefore \angle Y X Q=45^{\circ} \\
& \therefore X Y=Y Q & & \text { (opposite equal angles in } \triangle X Y Q \text {) } \\
\text { Now } P Q & =P Y+Y Q & & \text { (iii) } \\
& =P Y Q \text { collinear) } \\
& =P R+Y Q & & \text { (from i) } \\
& =P R+X Y & & \text { (from ii) } \\
& =P R+R X & & \text { (from iii) } \\
\therefore \quad P Q & =P R+R X & &
\end{array}
$$

Challenge solutions

1. Data: $P Q\|U V\| X Y$

Aim: Prove that $F G: G H=R W: W Z$
Construction: Construct $R T \| D E$

Proof:

In $\triangle R S W$ and $\triangle R T Z$

1. $\angle R S W=\angle R T Z \quad$ (corresponding angles, $U V \| X Y$)
2. $\angle R W S=\angle R Z T \quad$ (corresponding angles, $U V \| X Y$)
$\therefore \triangle R S W$ III $\triangle R T Z$ (AAA)
$\therefore R S: R T=R W: R Z \quad$ (matching sides of similar triangles)
$\therefore R T: R S=R Z: R W$
$R Z=R W+W Z \quad(R, W, Z$ collinear points $)$
Similarly, $R T=R S+S T$

$$
\begin{aligned}
& \text { Now } \frac{R T}{R S}=\frac{R Z}{R W} \\
& \text { becomes } \frac{R S+S T}{R S}=\frac{R W+W Z}{R W} \\
& \therefore \quad 1+\frac{S T}{R S}=1+\frac{W Z}{R W} \\
& \therefore \quad \frac{S T}{R S}=\frac{W Z}{R W}
\end{aligned}
$$

i.e. $\quad S T: R S=W Z: R W$

$$
\therefore \quad R S: S T=R W: W Z
$$

$R S G F$ is a parallelogram (2 pairs of opposite sides parallel)
$\therefore R S=F G \quad$ (opposite sides of parallelogram)
Similarly, $S T H G$ is a parallelogram and $G H=S T$.

$$
\begin{aligned}
\therefore F G: G H & =R S: S T \\
& =R W: W Z
\end{aligned}
$$

Note: This result is the theorem: Parallel lines preserve ratios of intercepts on transversals. It can be abbreviated as 'parallel lines preserve ratios'.
2. Data: $Q X$ bisects $\angle P Q R$

Aim: Prove that $\frac{P Q}{Q R}=\frac{P X}{X R}$.
Construction: Produce $P Q$ to Y so that $Q X \| Y R$.

Proof:

From Question 1, as $Q X \| Y R$ then $P Q: Q Y=P X: X R$
Now $\angle P Q X=\angle Q Y R \quad$ (corresponding angles, $Q X \| Y R$)
and $\angle X Q R=\angle Q R Y \quad$ (alternate angles, $Q X \| Y R$)
But $\angle P Q X=\angle X Q R \quad(Q X$ bisects $\angle P Q R)$
$\therefore \angle Q Y R=\angle Q R Y$
$\therefore \triangle Q R Y$ is isosceles
$\therefore Q R=Q Y \quad$ (opposite equal angles in $\triangle Q R Y$)
$\therefore \frac{P Q}{Q Y}=\frac{P X}{X R} \quad$ (parallel lines preserve ratios) \quad i.e. the result from Qu .1 .
But $Q Y=Q R \quad$ (proven above)
$\therefore \frac{P Q}{Q R}=\frac{P X}{X R}$
Note: This result is a corollary of the theorem proven in Question 1. An alternative proof, which does not use the theorem, appears on the following page.

Alternatively:

Data: $Q X$ bisects $\angle P Q R$
Aim: Prove that $\frac{P Q}{Q R}=\frac{P X}{X R}$.
Construction: Produce $P Q$ to Y so that $Q X \| Y R$.

Proof:

Let $\angle P Q X=x^{\circ}$
Then $\angle R Q X=x^{\circ}$
$\angle Q Y R=\angle Q R Y$
($Q X$ bisects $\angle P Q R$)
$\angle Q Y R+\angle Q R Y=\angle P Q R$
(opposite equal sides in isosceles $\triangle Q Y R$)
$\therefore 2 \times \angle Q Y R=2 x^{\circ}$

$$
\angle Q Y R=x^{\circ}
$$

$\therefore \quad \angle Q Y R=\angle P Q X$

In $\triangle P Q X$ and $\triangle P Y R$

1. $\angle P$ is common
2. $\angle P Q X=\angle Q Y R \quad$ (proven above)
$\therefore \triangle P Q X$ III $\triangle P Y R$
$\therefore \frac{P Q}{P Y}=\frac{Q X}{Y R}=\frac{P X}{P R}$

Taking $\frac{P Q}{P Y}=\frac{P X}{P R}$:

$$
P Q \times P R=P X \times P Y
$$

$P Q(P X+X R)=P X(P Q+Q Y)(P X R$ and $P Q Y$ are collinear $)$
$P Q \times P X+P Q \times X R=P X \times P Q+P X \times Q Y$

$$
\therefore P Q \times X R=P X \times Q Y
$$

But $Q Y=Q R$ by construction
$\therefore P Q \times X R=P X \times Q R$
$\therefore \quad \frac{P Q}{Q R}=\frac{P X}{X R} \quad$ (dividing throughout by $Q R \times X R$)

