Adding auxiliary lines: Student worksheet

http://topdrawer.aamt.edu.au/Geometric-reasoning/Misunderstandings/Revealing-the-invisible/Adding-auxilliary-lines

For each of the problems below it will be necessary to construct auxiliary lines in order to prove the required result.

1. In the diagram below, $A B \| E D$. Prove that $b=a+c$.

2. Prove that the angle in a semicircle is a right angle. Aim: To prove $\angle A C B=90^{\circ}$.

3. Prove that the angle at the centre is twice the angle at the circumference standing on the same arc. Aim: To prove $\angle A O B=2 \times \angle A C B$.

4. In the quadrilateral $A B C D, A B=D C$ and $A B \| D C$. Prove that $A B C D$ is a parallelogram.

5. $\quad \triangle P Q R$ is right-angled isosceles triangle. $P X$ bisects $\angle R P Q$.

Prove that $P Q=P R+R X$.

Challenges

1. \quad The line $A B$ intersects three parallel lines, $P Q, U V$ and $X Y$ at R, W and Z respectively. Also, line $D E$ intersects $P Q, U V$ and $X Y$ at F, G and H respectively. Prove that $F G: G H=R W: W Z$.

2. In $\triangle P Q R$, the bisector of $\angle P Q R$ meets $P R$ at X. Prove that $\frac{P Q}{Q R}=\frac{P X}{X R}$.

