Circle geometry theorems

http://topdrawer.aamt.edu.au/Geometric-reasoning/Big-ideas/Circle-geometry/Angle-and-chord-properties

	Theorem	Suggested abbreviation	Diagram
1.	When two circles intersect, the line joining their centres bisects their common chord at right angles.	centres of touching circles	
2.	Equal arcs on circles of equal radii subtend equal angles at the centre, and conversely.	equal arcs, equal angles	
3.	Equal angles at the centre stand on equal chords, and conversely.	equal chords, equal angles OR angles standing on equal chords OR angles standing on equal arcs	

	Theorem	Suggested abbreviation	4.
The angle at the centre is twice the angle at the circumference subtended by the same arc.	angles at the centre and circumference		
5.	The tangent to a circle is perpendicular to the radius drawn to the point of contact and conversely.	tangent perpendicular to radius	
6.	The perpendicular from the centre of a circle to a chord bisects the chord.	perpendicular from the centre	
7.	The line from the centre of a circle to the midpoint of a chord is perpendicular to the chord.	line joining centre to midpoint of chord bisector of a chord passes through the centre of the circle.	perpendicular bisector of chord

	Theorem	Suggested abbreviation	Diagram
9.	Equal chords in equal circles are equidistant from the centres.	equal chords equidistant from centre	
10.	Chords in a circle which are equidistant from the centre are equal.	equal chords equidistant from centre	
11.	Any three noncollinear points lie on a unique circle, whose centre is the point of concurrency of the perpendicular bisectors of the intervals joining the points.	perpendicular bisector of chord passes through the centre	
12.	Angles in the same segment are equal.	angles in the same segment	
13.	The angle in a semicircle is a right angle.	angle in a semi-circle	

| Theorem | Suggested abbreviation | |
| :--- | :--- | :--- | :--- |
| Opposite angles of a
 cyclic quadrilateral
 are supplementary. | opposite angles in a
 cyclic quad | |
| 15. | The exterior angle at a
 vertex of a cyclic
 quadrilateral is equal
 to the interior
 opposite angle. | quad |

| Theorem | Suggested abbreviation |
| :--- | :--- | :--- | :--- |
| The products of the
 intercepts of two
 intersecting secants to
 a circle from an
 external point. | intersecting secants |

Supplementary theorems

	Theorem	Suggested abbreviation	Diagram
Two circles touch if they have a common tangent at the point of contact.	tangent of touching circles		
2.	If an interval subtends equal angles at two points on the same side of it then the endpoints of the interval and the four points are concyclic.	converse of angles in the same segment	

